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Abstract

The rapid detection of attackers within firewalls of enterprise computer networks is of
paramount importance. Anomaly detectors address this problem by quantifying devi-
ations from baseline statistical models of normal network behavior and signaling an
intrusion when the observed data deviates significantly from the baseline model. How-
ever, many anomaly detectors do not take into account plausible attacker behavior. As
a result, anomaly detectors are prone to a large number of false positives due to unusual
but benign activity. This paper first introduces a stochastic model of attacker behavior
which is motivated by real world attacker traversal. Then, we develop a likelihood ratio
detector that compares the probability of observed network behavior under normal con-
ditions against the case when an attacker has possibly compromised a subset of hosts
within the network. Since the likelihood ratio detector requires integrating over the
time each host becomes compromised, we illustrate how to use Monte Carlo methods
to compute the requisite integral. We then present Receiver Operating Characteristic
(ROC) curves for various network parameterizations that show for any rate of true pos-
itives, the rate of false positives for the likelihood ratio detector is no higher than that
of a simple anomaly detector and is often lower. We conclude by demonstrating the
superiority of the proposed likelihood ratio detector when the network topologies and
parameterizations are extracted from real-world networks.
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1. Introduction

Many existing systems designed to detect intrusions into computer networks mon-
itor data streams only at the perimeter of the network. In addition, many network in-
trusion detection systems, such as snort [25], are signature based, meaning that every
communication entering or leaving the network is examined for matches to a database
of signatures, or indicators of compromise. At this point, the long list of breaches to
corporate networks [18, 19] speaks loudly to the insu�ciency of these methods. At-
tackers are able to innovate rapidly in order to avoid signature schemes, and penetrate
these perimeter systems seemingly at will. Therefore, there is a pressing need to iden-
tify attackers within network perimeters, and to do so using behavioral methods rather
than signatures.

Anomaly detectors — a model-based approach— show promise in detecting within-
perimeter attacks. In general, anomaly detectors quantify “normal” network behavior,
and when observed behavior significantly deviates from the baseline model, an intru-
sion is signaled. As a simple example, consider an anomaly detector that models a
computer network as a directed graph where nodes are users within a network and
edges represent a communication channel between users. The detector is then cali-
brated such that it specifies the average rate of packet transfer along each edge. When
the observed rate of packet transfers is su�ciently di↵erent from the calibrated rate of
packet transfers, the detector signals an intrusion.

In practice, many reported anomalies end up being false, reflecting behavior that is
unusual but benign. This is due in part to an incomplete specification of normal network
behavior in the null hypothesis as well as the di�culty in modeling and predicting the
behavior of humans that interact over the network. There are at least two approaches
in addressing this issue. The first is to improve the specification of the network under
normal conditions.1 The second is to develop a model of attacker behavior and compare
the probability of the observed behavior under the hypothesis that the network has
been compromised against the hypothesis that the network is functioning under normal
conditions. With an accurately specified attacker model, such an approach would rule
out benign but unusual activity as being malicious since it is not consistent with attacker
behavior. Our work in this paper takes the second approach. More explicitly, to our
knowledge this paper is the first to incorporate an exact parametric specification of
attacker behavior into a likelihood ratio detector for identifying malicious traversal
activity within a network perimeter.

The challenge is in how to model the behavior of a network that has been penetrated
without pre-supposing attacker methods, since these methods evolve rapidly. To see
how this might be done, consider a common attack conducted on an enterprise network.
First, a Phishing email or set of emails, containing either a malicious attachment or a
link to an internet host serving malware, is sent to the target network. Click rates on
Phishing emails, even after enterprise training is conducted, can be as high as 50%
[20], providing a high-confidence intrusion vector.

1This work is similar to reducing prediction error of network tra�c. See Jiang et al. [10], Jiang et al.
[14] and Jiang et al. [9], for work that focuses on improving the modeling and prediction of normal network
behavior.
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At this point, the firewall is penetrated and the attacker has control of an initial host
in the target network. The attack is far from complete since the initially compromised
host is not the primary target of the attacker. Instead, the attacker seeks to penetrate
the network and access key servers. However, since credentials are typically required
to access these servers, the attacker undergoes a process known as lateral movement to
move among hosts collecting these credentials [17]. This means that there is a definite
sequence in the movement of the attacker across the network, from computers with low
value (for any of the goals of inserting malware, extracting data, or stealing credentials)
to computers with higher value, such as data servers and active directories. This will
be true no matter what precise methods the attacker uses to achieve that movement. As
a result, the attacker’s traversal will leave a trace of increasing network tra�c going
from low value computers to progressively higher value ones. Therefore, an increase
in network tra�c along paths from low value to high value nodes in a network can be
used as the basis of a model of network behavior once it has been penetrated.

The approach in this paper is parallel to that of [12] in that we first propose a model
of attacker behavior and a novel detection criteria based on a likelihood ratio. For var-
ious network parameterizations, we simulate network activity in both the normal and
compromised state. We then employ receiver operating characteristic (ROC) curves to
show that the proposed likelihood ratio detector outperforms a simple anomaly detector
that does not exploit information regarding the traversing nature of an attack. In addi-
tion we develop the Monte Carlo techniques used to approximate the relevant integrals
in computing our proposed likelihood ratio. Finally, we extract topologies and param-
eter data from real-world networks and then simulate attacker behavior. The results
show that in real-world networks, our proposed likelihood ratio detector is superior to
the simple anomaly detector.

2. Background

Model-based anomaly detection proceeds by modeling and estimating the parame-
ters, ✓̂, of a computer network under normal conditions. Next, given a dataset D under
question, the likelihood of the parameters given the data can be evaluated: L(ˆ✓ | D).
A generalized likelihood ratio test (GLRT) can then be used to infer whether a more
likely alternative parameterization is present given data D

GLRT =
L(ˆ✓ | D)

sup✓2⇥L(✓ | D)

where ⇥ is an alternative parameter space. Typically, we choose what data D to collect
in order to facilitate statistical discovery of security breaches. For example, the network
model under normal conditions might be a graph connecting computers (nodes or hosts)
with edges representing parameterized time-series of tra�c. The data collected would
then be communications between nodes. When the observed communication pattern
is di↵erent from the parameterized time-series, the anomaly detector would sound an
alarm. Additionally, since attacks typically cover multiple nodes and edges, subgraphs
can be used to group data from multiple nodes and edges into D for increased detection
power. Such graph based methods include [1, 4, 23, 28, 3].
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If we know that the attacker behaves according to a specified alternative parameter
vector, say ✓

A

, then the uniformly most powerful test for rejecting the null hypothesis
that no attack is present is a likelihood ratio test where ✓

A

is used in the denominator.
That is, if we know the attacker is behaving according to ✓

A

, the power of the test is
maximized when using the test statistic

GLRT =
L(ˆ✓ | D)
L(✓

A

| D)
. (1)

However, the set of alternatives ⇥ is typically under-specified. In other words,
anomaly detectors do not specify exact attacker behavior but simply restrict the param-
eter space of alternatives. A representative example of such a detector is the Modeled
Attack Detector (MAD) given in [29]. In their work, the authors consider the rate of
incoming tra�c in order to detect a Distributed Denial of Service (DDoS) attack. They
assume that that under normal conditions, the number of incoming connections can be
modeled by a Poisson distribution with average rate of messages per unit time of �B.
The authors treat �B as a known and calibrated parameter. Therefore, given a sequence
of incoming connections (i.e. one unit of network tra�c) D = {d1, d2...dN} per unit
time interval, the probability of observing D under the hypothesis that H0 = no attack
is taking place is given by

P(D|H0) =
NY

i=1

e��B�di
B

di!
. (2)

The authors assume that under a DDoS attack the network receives additional malicious
connections at fixed, deterministic time intervals but at an unknown rate. If the rate was
known, the probability of an observed sequence under the hypothesis that H1 = DDoS
attack is occurring is given by

P(D|H1) =
NY

i=1

�di��m
B e��B

(di � �m)!
. (3)

where �m is the rate at which the network receives malicious connections. In reality,
�m—the rate under the alternative hypothesis—is unknown so a simple likelihood ratio
test is unavailable. Instead, the authors employ a GLRT which is given by

LR =
P(D|H0)

max
�m

P(D|H1)
(4)

where the denominator is maximized when �m = ��B +
1
N
PN

i=1 di. When LR is less
than a predefined threshold, the MAD indicates an attack.

Although the model of Thatte et al. [29] is concerned with DDoS attacks and not
within-perimeter attacks, it succinctly showcases the key elements of anomaly detec-
tion that this paper intends to improve upon. Like the MAD, the work presented in this
paper will use a likelihood ratio as the detection criteria. However, unlike the MAD,
this paper will focus on incorporating exact specification of attacker behavior into a
likelihood ratio detector for within-perimeter detection to improve detection accuracy.

4



The likelihood ratio detector we introduce in this paper is most similar to the
anomaly detector presented in Neil et al. [23], known as PathScan. In that work, com-
munication channels between hosts are in either an active or inactive state. In the active
state, it is assumed that communications take place stochastically at a known rate. In
the inactive state, no communication occurs. The anomaly detector does not observe
the state of the edge but instead only knows the probability of an edge transitioning
(transition parameter) between the active and inactive states and observes communi-
cations between hosts during a moving time window. “Attacker behavior” is modeled
as an increase in the probability of an edge transitioning from an inactive to an active
state. The authors then compute the probability of an observed dataset under the hy-
pothesis that the transition parameter is equal to the calibrated transition parameter and
compare that likelihood to the likelihood under the maximum likelihood estimate of
the transition parameter. When the value of the likelihood at the maximum likelihood
estimate is su�ciently di↵erent from the value of the likelihood under the calibrated
transition parameter, PathScan indicates an intrusion. Our novel detector presented be-
low is similar to PathScan in that it uses a likelihood ratio to detect within perimeter
anomalies. However, our detector is di↵erent from PathScan in that it explicitly cap-
tures the the fact that the attacker must traverse the network when attempting to access
key information located on various nodes in the network. Furthermore, our work shows
how to incorporate exact information of an attacker’s strategy into the likelihood ratio.

It is important to note that likelihood and likelihood ratio based approaches are not
the only characterizations of model-based anomaly detectors. For example, Lee and
Xiang [22] focuses on information theoretic measures for anomaly detection such as
entropy, conditional entropy, relative conditional entropy, information gain, and infor-
mation cost. From a learning-based approach, Ryan et al. [26] uses artificial neural net-
works with supervised learning, based on the back-propagation neural network, called
Neural Network Intrusion Detector. However, the limitations to supervised learning as
applied to intrusion detection are well documented and are discussed in Sommer and
Paxson [27].

A sizable portion of the literature approaches anomaly detection from the frequency
domain. The work of Jiang et al. [13] uses principal component analysis on wavelet
transforms of network tra�c to detect anomalies in backbone networks. Similarly, the
work of Jiang et al. [12] uses the S -transform to convert network tra�c data into the
frequency domain and then presents ROC curves that illustrate the e↵ectiveness of their
approach.

Another approach to anomaly detection is through the use of sequential hypothesis
tests. In a sequential hypothesis test, the test is applied multiple times as the data
are generated. Data that are included in the first hypothesis test can be included in
hypothesis tests later in time. Two examples of sequential based hypothesis tests are
[30] and [15], who employ CUSUM charts to determine when the parameters that
govern network behavior (such as packet transfer rates between hosts) have changed,
which signals a potential intrusion.

To pinpoint our work in the current literature, we note that our proposed likelihood
ratio detector can be classified as a within-perimeter (like PathScan), likelihood ratio-
based (like [29]) network intrusion detector. The analysis is performed in the time
domain (like Thatte et al. [29] and Neil et al. [23]). It does not use sequential hypothesis
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tests (as in Kang et al. [15]), supervised learning (as in Ryan et al. [26]) or information
theoretic quantities (as in Lee and Xiang [22]). Additionally, our work enhances the
current state of the art likelihood ratio intrusion detection systems in that it shows how
to incorporate explicit traversal behavior into the denominator of the likelihood ratio.
For a more detailed survey of general anomaly detection, see the surveys of Chandola
et al. [2], Lee and Stolfo [21], Garcia-Teodoro et al. [5] and Kantas et al. [16].

3. Model

We model a computer network as a directed graph, potentially with cycles, where
each node (also referred to as “host”) represents a computer or a human inside the fire-
wall. Each node has an associated state. Examples of human nodes are users, system
administrators, and hackers, whose states can represent their knowledge, their strate-
gies, etc. Each directed edge represents a potential communication directly connecting
one node (human or computer) to another node (human or computer). These edges
have associated states, which represent communication messages. So the computer
network evolves according to a Markov process across all possible joint states of every
node and every edge.

In this initial project, we only consider computer nodes, treating the human using
a particular computer as part of that computer. We also only consider those computers
that are inside the firewall. Each node can be in one of two states, “normal” or “com-
promised”. Similarly, each edge can be in one of two states, “no message”, or “message
in transit”. When a node is in a normal state, it sends benign messages2along any of
its directed edges according to an underlying Poisson process with a pre-specified rate.
To maintain generality, we do not define a message explicitly but only suggest that a
message can be, among many other alternatives, a remote desktop protocol connection
or file transfer protocol connection. When a node is compromised, it still sends benign
messages at the same rate as when it is not compromised, but now it superimposes
malicious messages. These are generated according to another Poisson process, with
a much lower rate, thus e↵ectively increasing the Poisson rate for message emissions
out of a compromised node by a small amount. We use a stochastic model of attacker
behavior because in reality, it is impossible to perfectly predict each action of the at-
tacker. In other words, we are not claiming that attackers are strategically randomizing
their actions. Instead, all we are claiming is that the only information a↵orded to the
detectors is that the attacker’s behavior —strategic or otherwise— can be described
by a Poisson process. The task of network defense is to detect the small increases in
the message transmission rates and decide whether they fall into a pattern indicative of
attack.

For simplicity we assume that if an edge from a compromised node to a non-
compromised node gains a new malicious message at time t, then with probability
1.0 the second node becomes compromised and the new malicious message disappears

2A message is also commonly called a ”connection.” To maintain generality, the term message is used to
avoid confusion with the concept of “establishing a connection”.
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immediately, leaving a trace on our net-monitoring equipment that that message trav-
eled down that edge at t. No node can become compromised spontaneously, and no
node can become uncompromised.

3.1. Definitions
Let G = (V, E) be the directed graph of a computer network where V = {v1, v2...vN}

is the set of nodes and E is a set of directed edges that represent communication chan-
nels between nodes. Let � 2 BN denote the state of all nodes in the network and �vi

denote the state of node vi: 1 representing the uncompromised state and 0 representing
the compromised state. The Markov process governing the computer network is pa-
rameterized by the set of Poisson rates � ⌘ {(�v,v0,�v ) : v, v0 2 V, v0 , v,�v 2 B} giving
the total rate at which v sends messages to v0 when v is in state �v. We write the rate
parameter for just emission of malicious message from v to v0 as �v,v0 ⌘ �v,v0,0 � �v,v0,1.
A directed edge from v to v0 exists if and only if �v,v0,s > 0 for some s 2 �v.

Suppose we observe the tra�c on a net for a time interval [0,T ], and denote by
(⌧, v, v0) an observation that a message was added at time ⌧ to the edge from v to v0.
The resulting dataset D = {(⌧i, vi, v0i)}, has ⌧i 2 [0,T ] and each (vi, v0i) 2 V2. We assume
that the observation process is noise-free, i.e., that all messages are recorded and no
spurious messages are.

In time continuous processes like this, the probability that two nodes get compro-
mised at exactly the same time is precisely zero; as a result, we can assume a strict
time ordering among the compromised nodes. For all 1  k  N indicating the possi-
ble number of node compromises that occur in [0,T ] (though others might occur later),
define Sk as the set of vectors s 2 Vk such that each element of Sk uniquely defines
an ordering of k nodes that can become compromised when the network perimeter has
been penetrate. Define S = [N

k=1S
k. Also define the space Z ⌘ [0,T ] [ {⇤}, whose

elements are either a time of compromise in the observation window [0,T ], or a ⇤
to indicate no compromise occurs in that interval. We will mostly consider vectors
z = (zv1 , zv2 , ...zvm ) 2 Zm specifying the times of compromise of various nodes, and
index components of the vectors z by the nodes compromised (or not for ⇤) at those
times. So zsi is the time that si, the i’th node to get compromised, gets compromised,
or is a ⇤.

For each pair (v, v0), it will be useful to define an associated function v,v0 (zv,D) that
equals the number of messages recorded in D as going from v to v0 before zv, where for
zv = ⇤, this is interpreted as the total number of such messages in the observation win-
dow. Similarly define v,v0 (zv,D) as the number of messages after v gets compromised,
or 0 if it never gets compromised.

Finally, for any k  N, ⌧ > 0, we denote by ⌧k the subset of vectors [0, ⌧)k whose
indices are non-decreasing, i.e., x 2 ⌧ ) xi  x j 8i, j > i. If exactly k nodes get
compromised in our observation window, elements of ⌧k exhaust the possible sequence
of times at which the nodes are compromised. In the discussion below, we use “P(. . .)”
to refer to either probabilities or probability densities, with the context making the
meaning clear.

Our likelihood ratio detector is based on comparing the probability of D under two
di↵erent Poisson processes: one where there is no attack and one in which there is an
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attacker at node v1 at time 0. An anomaly detector only considers the first of these prob-
abilities. Whether or not there is an attack, the probability of our dataset conditioned
on z can be calculated as follows. For each pair of nodes (v, v0), v,v0 (z,D) messages
flow from v to v0 in the period [0, zv] when the source was uncompromised (and hence
emitting at a rate �v,v0,1), and if the node gets compromised at zv, then v,v0 (z,D) is the
number of messags from v to v0 in the period [zv,T ]. As all the emissions are indepen-
dent, the net conditional probability density is given by the product of these factors:

P(D | z) =
Y

v2V

Y

v02V,v0,v


(1 � �zv,⇤)

e�zv�v,v0 ,1 (zv�v,v0,1)v,v0 (z,D)

v,v0 (z,D)!
⇥

e�(T�zv)�v,v0 ,0 ((T � zv)�v,v0,0)v,v0 (z,D)

v,v0 (z,D)!
+

(�zv,⇤)
e�T�v,v0 ,1 (T�v,v0,1)v,v0 (z,D)

v,v0 (z,D)!

�
(5)

where �a,b indicates the Kronecker delta function, and in particular, �zv,⇤ equals 1 if node
v is not compromised in the window [0,T ] and 0 otherwise. In the case of no attack,
it is only the second summand that survives in every term, giving the probability of D
given that there is no attack is

P(D | z = ~⇤) =
Y

v2V

Y

v02V,v0,v

e�T�v,v0 ,1 (T�v,v0,1)v,v0 (z,D)

v,v0 (z,D)!
(6)

where ~⇤ is the vector of all ⇤’s. This is the only probability considered by an anomaly
detector, and is the first of the two probabilities considered by our likelihood ratio
detector.

In our initial project, we assume that if an attacker is present in the observation
window, at time 0 they have compromised a particular node v1 and no other node (In
a full analysis we would average over such infection times and the nodes where they
occur according to some prior probability, but for simplicity we ignore this extra step
in this paper.). Accordingly, zvi > 0 8i > 1 (whether there is an attacker or not), and
the second of the two probabilities we wish to compare is P(D | zv1 = 0).

Unfortunately, our stochastic process model gives us P(D | z), where z specifies
the times of infection of all nodes compromised in the observation window. To ob-
tain, P(D | zv1 = 0), which only specifies the time of infection of the first node to
be compromised, we need to integrate over the other infection times, this yields the
integral:

P(D | zv1 = 0) =
P

s2S
R

T |s| dz P(D | z, s)P(z, s | z1 = 0, s1 = v1) (7)

The first probability density in equation 7, P(D | z, s), is given by writing zsi = zi for all
i  |s|, all other zv = ⇤, and plugging into equation 5. (N.b., z is indexed by integers, and
z by nodes.) The second probability density is the dirac measure �s1v1�(z̄1) if |s| = 1.
For other s’s we can evaluate by iterating the Gillespie algorithm [6]:
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Proposition 1. As shorthand write “v < s” to mean 8i  |s|, si , v. For any s, z 2 T |s|
where |s| > 1,

P(z, s | z1 = 0, s1 = v1) =
Q

v<s e�(T�z|s|)
P

i|s| �si ,v
Q|s|�1

j=1 �
0
s, j+1e�

0
s, j(z j+1�z j)

where �0s,k ⌘
Pk

i=1
P

v<[k
j=1{s j}:(si,v)2E �si,v

and �0s,k ⌘
Pk�1

i=1 �si,sk .

Proof. To begin, expand

P(z, s | z1 = 0, s1 = v1) = P(z2, s2 | z1 = 0, s1 = v1) ⇥
P(z3, s3 | z2, s2, z1 = 0, s1 = v1) ⇥ . . . (8)

To evaluate the first term on the right hand side, P(z2, s2 | z1 = 0, s1 = v1), expand
the aggregate rate of a malicious message leaving node s1 if that node is compromised
as �0s,1. The probability that node s1 sends a malicious message to s2 before sending one

to any other node is
�0s,2
�0s,1

. Also, the probability that s1 sends its first malicious message

at time z2 is �0s,1e��
0
s1

(z2�z1). Furthermore, the time homogeneity of Poisson processes
imply that the time to the first malicious message and the node to which it is sent are
statistically independent. Therefore

P(z2, s2 | z1 = 0, s1 = v1) = P(s2 | z2, z1 = 0, s1 = v1) ⇥
P(z2 | z1 = 0, s1 = v1)
= P(s2 | s1 = v1)P(z2 | z1 = 0, s1 = v1)

= �0s,2e��
0
s,1(z2�z1) (9)

Next we similarly expand P(z3, s3 | z2, s2, z1 = 0, s1 = v1) = P(s3 | s2, s1)P(z3 |
z2, s2, s1). The set of edges that lead from either s1 or s2 to some currently uncom-
promised node is [v,s1,s2 : (s1,v)2E or (s2,v)2E . The sum of the malicious message rates of
those edges is �0s,2 Therefore we have P(s3 | s2, s1) = �0s,3/�

0
s,2 and P(z3 | z2, s2, s1) =

�0s,2e�
0
s,2(z3�z2), so that

P(z3, s3 | z2, s2, z1 = 0, s1 = v1) = �0s,3e��
0
s,2(z3�z2)

Iterating through the remaining components of s gives the second product term on the
right hand side in the claimed result. The first product term then arises by considering
the time interval between z|s| and T , during which no nodes v not listed in s receive a
malicious message from any of the nodes that are listed in s. ⇤

To evaluate our likelihood ratio attack detector we need to plug the results of Propo-
sition 1 and equation 5 into 7, evaluate that integral, and then divide by the likelihood
given in equation 6.

We acknowledge that in this specification, we are sacrificing some model accuracy
for computational tractability. For example, we assume we know which node an at-
tacker initially infects upon infection, which in real network scenarios is a plausible
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but unlikely scenario. It is possible to compute the probability of an attack when the
initially infected node is unknown by averaging the likelihoods for all possibly infected
initial nodes over some prior probability of infection. Furthermore, we assume that in
any given realization, there is at most one attacker present when in reality there can be
any number of attackers present. Assuming the attackers act independently, computing
such a likelihood given two attackers are present would involve elaborating our model
so that each node can be in state “normal”, “infected by attacker 1”, “infected by at-
tacker 2” or “infected by both attackers.” We would then need to integrate over the
times the nodes change states. Although this is possible and the requisite mathematics
would be very similar to the model presented above, the essence of our contribution is
best illustrated with the simplest attacker model. Future work will focus on adding in
the intricate details of real-world computer networks.

3.2. Computational approximations
To use our likelihood ratio attack detector, we need to evaluate equation 7. To

do this we express it as the expected value of P(D | z, s) over all z and s, evaluated
under the multivariate distribution P(z, s | z1 = 0, s = v1). We then reformulate that
expectation value, in a way that allows us to approximate it via simple sampling Monte
Carlo [24].

To begin, we consider a new network (V, E0) created from our original network
(V, E) by adding enough new edges to those in E so that V contains a (directed) path
from v1 to every node in V . We leave rates of both benign and malicious edges on all
of the old edges (i.e., on all e 2 E ✓ E0) unchanged. Define some strictly positive value
�̃ so that both T �̃N2 is infinitesimal on the scale of 1 and so that �̃ is infinitesimal on
the scale of the smallest rate in the original network. This ensures that the probability
that any non-empty data set D0 generated with our new net has a message traverse one
of the new edges before time T is infinitesimal. This in turn means that the likelihood
of any non-empty D generated with the new net is the same as its likelihood with the
original net, whether we condition on there being an attacker or on there not being one.

Recall that in the original network, there exists an edge between nodes if and only if
the rate of message transmission along the directed edge is positive. Furthermore, in the
new net used to compute the value of the likelihood, the only new edges are from v1 to
all nodes that did not receive communication from v1 in the original net. Furthermore,
the rate of communication along these new edges is modeled as a Poisson random
variable with a positive but infinitesimally small rate parameter. Therefore, we are still
considering Poisson processes with the new net, and all Poisson rates are greater than
zero on all edges in the new net. Combining this with the fact that there is a path in
E0 from v1 to every node v 2 V , we see that if v1 is compromised in the new net, then
every node in the new net gets compromised at some finite time, with probability 1.
This allows us to re-express equation 7 as

Z

1N
dz
X

s2S
�|s|,R(z)P(D | z, s)P(z, s | z1 = 0, s1 = v1) (10)

where R(z) is the number of components of z that are less than or equal T . It is this
expectation value that we approximate with simple sampling.
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Since it is the product �|s|,R(z)P(z, s | z1 = 0, s1 = v1) that is a normalized distribution
for this new integral’s regions of integration, we must sample from that. To do this, we
iterate the expansion of P(z, s | z1 = 0, s1 = v1) in equation 8, multiplying by the
Kronecker delta function at each step. Note that due to that Kronecker delta function,
whenever we reach an iteration i where the sample zi we generate is greater than T ,
before evaluating P(D | z, s) we first pad all components of z at i or later to be “*”, and
set s to be the current list. After evaluating P(D | z, s) for that z and s, we break out,
and form a new sample of P(z, s | z1 = 0, s1 = v1).

As an illustration, to sample the term �|s|,R(z)P(z2, s2 | z1 = 0, s1 = v1), we first set
s1 = v1, z1 = 0, and then sample �0s,1e��

0
ŝ1

(z2�z1) to get a value of z2. If that z2 > T , then

we break and start generating a new sample. Otherwise we sample s2 according to
�0ŝ,2
�0ŝ,1

,
and then iterate to generate a sample of P(z3, s3 | z2, s2, z1 = 0, s1 = v1).

4. Experimental results

We now present receiver operating characteristics (ROC) curves for various net-
work topologies, message transmission rates and observation windows. The results
cover a wide range of typical network structures and attacker behavior. These exper-
imental results provide strong evidence that the likelihood ratio detector significantly
outperforms state-of-the-art techniques based on anomaly detection, irrespective of net-
work topology and attacker strategy.

An ROC curve is a two-dimensional plot that compares the true positive and false
positive rates of a binary classifier. For a given threshold, the true positive rate is
calculated as True positives

Total positives and the false positive rate as False Positives
Total Negatives . These values are

plotted for di↵erent threshold choices to create a curve. When comparing ROCs, the
higher the curve, the better.

Our experiments are designed to represent stylized enterprise networks where the
attacker has penetrated the perimeter and can begin traversing the network. For exam-
ple, the attacker may have compromised the computer of a credit card customer service
representative at a major bank. However, he is not interested in the information avail-
able on that machine but is interested in account information held on a central server.
As a result, he must emit messages from the originally infected machine in order to

Figure 1: A small, simple network. The node labeled “A” is the attacker. The “U” nodes are the normal users
of the network.

11



Figure 2: ROC curves for the network topology
shown in figure 1.

Figure 3: ROC curve under the “enter slowly, tra-
verse quickly” specification.

gather credentials and elevate privileges until he has access to valuable information.
This is however only one possible narrative and the experimental environment can rep-
resent any number of enterprise attacks.

In each of our experiments, we generated 400 realizations of network activity over
an observation window length T . There are 200 cases with an attacker and 200 cases
without an attacker. Recall that the dataset available to both of the detectors is a collec-
tion of triples of the form

⇣
vi, v0i , ⌧i

⌘
indicating that a message traversed an edge from vi

to v0i at time ⌧i. From such a dataset it is possible to compute the likelihood ratio as well
as the baseline likelihood detection criteria, which are both given in section 3. For each
realization, we compute the likelihood that the observed message transmissions come
from a system with no attacker and the likelihood that the observed message transmis-
sions come from a system with an attacker. The likelihood ratio classifier proposed in
the previous section is the ratio of the two likelihoods. The ROC curve for anomaly
detection uses only the likelihood of no attacker as the classifier.

In our first experiment, we analyze a small network as shown in figure 1 for T =
1500. The “star” formation in figure 1 is a typical subgraph of many computer net-
works. More generally, the experiments in this section use topologies that are stylized
representations of small sections of real-world subgraphs (such as a “star” or a ”cater-
pillar”). However, these topologies may not be realistic of all real-world networks. To
ensure that our results hold for more realistic, larger networks, the “Real Data Exper-
iments” section extracts real-world network topologies from the computer network at
Los Alamos National Lab.

Normal message tra�c rates are set to 1 and malicious message transmission was
set to 3% of the normal rate, which models a relatively slow attack. Under this sce-
nario, the attacker remains on the network for long periods of time and traverses the
network sporadically. %Note that in these initial experiments, we use homogeneous
rates of benign message transmission. This allows us to investigate the e↵ects on the
ROC curves of changing other model parameters (such as the observation window or
rate of malicious message transmission) without having to consider how the e↵ects
depend on rate parameter heterogeneity. Nevertheless, the “Real Data Experiments”
section considers a high degree of rate heterogeneity and confirm the superiority of the
likelihood ratio detector.

Figure 2 shows that the likelihood ratio detector outperforms the baseline anomaly
detector. That is, for any false positive rate the likelihood ratio detector has a higher
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true positive rate than the simple anomaly detector. Furthermore, figure 2 shows that
the superiority of the likelihood ratio detector is clear even for low values of the false
positive rate. This is important because in real world networks, limited resources only
allow security response teams to investigate a small number of instances and thus must
set the threshold to a relatively small rate of false positives. In other words, if the like-
lihood ratio detector’s superiority was only apparent for relatively high rates of false
positives, its benefits would not be realized in practice. However, since the likelihood
ratio detector’s advantage is evident for low false positive rates, the initial results sug-
gest that it would improve practical anomaly detection.

Figure 4: ROC with T = 10.

In our second experiment, we consider the same network but adopt an “enter slowly,
traverse quickly” strategy for the attacker and use T = 400. In this scenario, the
attacker initially sends messages at a rate of 3% of the initial compromised node’s
normal transmission rate. Once inside the network, the attacker traverses the network
rapidly by sending messages at a rate of 6% of the normal message rate. Figure 3 once
again shows that the likelihood ratio detector dominates the simple anomaly detector.
Like figure 2, the dominance of the likelihood ratio detector is evident for low (0) levels
of the false positive rate.

In our third experiment, using the same network and T = 10, we model an attacker
that makes no attempt to “hide” from the detectors, but instead tries to traverse the
network fast enough so that by the time an alarm sounds, the network has already been
compromised. Malicious message rates are set to half the normal tra�c rate. Figure 4
provides the third validation that the likelihood ratio detector performs better than the
anomaly detector and indicates that it is possible to detect the attacker before he reaches
his goal.

The fourth experiment employs the same three attacker heuristics but this time for
the larger network described in figure 5. All benign message transmission rates are
once again 1 and the rate of malicious messages is given in the caption of the figure.
The motivativation for this experiment is two-fold. First, it is used to verify that the
results of the previous experiments were not specific to a certain network topology.
Secondly, the larger network contains more nodes and more edges and thus requires
more computational resources to compute the likelihood ratio. Therefore, the larger
network serves as a test bed to see if the likelihood ratio detector remains superior under
a modest scale increase. The ROC curves indicate that the likelihood ratio detector
outperforms the anomaly detector under all three specifications in this case as well.
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Figure 5: Network topology (upper left) and ROC curves for various sets of parameters: Upper right: T =
800 and all rates 3% normal rates. Lower left: T = 50 and the rate of malicious messages out of the initially
infected node is 3% the normal message rate while malicious messages out of all other nodes is 6% the
benign rate. Lower right: T = 10 and malicious rates are 50% of benign rates except for nodes with more
than 2 outgoing edges. For those nodes, the rate of malicious messages is 10% of benign messages.

Figure 6: ROC curve under the scenario where the attacker becomes more aggressive as he approaches the
goal.
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A final test examines the performance of the likelihood ratio detector when the
attacker’s strategy is to increase in aggression as he approaches his end target. Figure
7 shows a network where the attacker moves toward a goal (node ’G’). All nodes send
normal messages at rate 1. At node ’A’, the attacker sends malicious messages at
rate .05. For each subsequent node infection, the malicious message rate increases by
.05. The observation window is set to T = 12. Once again, figure 6 shows that the
likelihood ratio detector outperforms the simple anomaly detector. This is especially
promising since the advantage of the likelihood ratio detector is evident for very low
false alarm rates (note the x-axis ends at .2). Additionally, it shows that the likelihood
ratio detector outperforms the simple anomaly detector, even when the simple anomaly
detector performs relatively well. (The anomaly detector detects 90% of attacks with a
false positive rate of about .05 in figure 6 compared to a false positive rate of .5 in the
top right corner of figure 3). These results along with the previous experiments suggest
that the superiority of the likelihood ratio detector exists regardless of the performance
of the simple anomaly detector.

Model misspecification. The preceding results assumed that the rate of malicious mes-
sage transmission and attacker strategy is known. That is, the parameters used to com-
pute the likelihood ratio test statistic were the rates that the attacker actually used. In
reality this is not usually the case. Therefore, to test the performance of the likeli-
hood ratio detector in a more realistic scenario we assume that the attacker’s strategy is
misspecified and test the performance of the likelihood ratio. In this scenario, we use
the network described in Figure 7 with T = 10 and we set all normal message rates
equal to 1 and compute the likelihood ratio as if the rate of malicious messages is .5 on
edges exiting any compromised nodes. This model of the attacker allows the detector
to hedge for an attacker that could choose any path from A to G. In our experiments,
the actual attacker only traverses the center path (using rate .5). Figure 8 shows that
even under misspecification, the likelihood ratio detector is superior to the baseline
anomaly detector. In this specific example, the superiority is most pronounced around
a false positive rate of .5. This is too high to be practically significant but there are also
modest performance improvements for low false positive rates. Furthermore, because
the likelihood ratio test uses incorrect parameters in the alternative hypothesis, there
is not theoretical guarantee that the likelihood ratio outperforms the simple anomaly
detector. However, this example shows that for any threshold, the likelihood ratio does
at least as well as the simple anomaly detector.

To further test model misspecification, we consider the net in figure 9. This topol-
ogy is a stylized version of commonly observed attacker behavior as noted in [23] In
short, an attacker sends messages to all hosts connected to a host he has already com-
promised. After exploring the hosts connected to the originally compromised host, he
will then occupy another host and then begin exploring from that host. This generates
what is called a “caterpillar” pattern of malicious behavior.

The type of model misspecification analyzed here is one in which the specified rate
of attacker behavior is subject to non-systematic error. Since in most cases the attacker
is a human with imperfect reasoning, it would be unreasonable to expect to model the
attacker’s method exactly. Or on the other hand, it is not likely that an attacker model
will be able to perfectly specify what an attacker will do but only be able to determine
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Figure 7: Network topology with misspecified
attacker strategy.

Figure 8: ROC curve when the model allows the
attacker to take all paths, but he only takes one.

how attackers will behave on average. To analyze this type of model misspecification,
the attacker sends messages along the center path and to the o↵ center hosts in figure
9. (The rate along the center path is .5 and o↵ center is .25. The rate of background
messages is 1 for all hosts). However, the rate at which the likelihood ratio models the
attacker is subject to mean-zero, Gaussian noise with standard deviations of 10, 20 and
30 percent of the actual attacker rate.

Figure 9 shows that even under non-systematic errors in the attacker rates, the like-
lihood ratio detector still performs better than the simple anomaly detector. Interest-
ingly, increasing the standard deviation of the noise seems to have little to no e↵ect on
the performance of the likelihood ratio detector. The slight di↵erence in performance
is likely a result of stochasticity of the underlying data generating process.

Another test of model misspecification in the caterpillar net is the converse of the
misspecification that generated figure 8. For that experiment, we modeled the attacker
as traversing any and all possible paths in the network where in reality he only traversed
one path. However in this example, we calculate the likelihoods as if the attacker only
took the center path of the caterpillar net but in reality, he was actually exploring the
left and right hosts.

This type of model misspecification has at least two real world interpretations. The
first is that the model misspecifies the attacker as being more intelligent than he actually
is. For example, if the attacker’s goal is to traverse the caterpillar to the last center host,
he would not gain anything from exploring the nodes o↵ of the center path. However, if
the attacker does not know the topology of the network and the location of the valuable
information, he will explore the o↵-center nodes in the network. Therefore, this version
of model misspecification models the attacker as more intelligent and e�cient than he
actually behaves.

Another interpretation is of practical concern. The strength of a likelihood ratio
detector will — to some degree — depend on how accurate the model of the attacker
is. However, the attacker is a goal driven agent and therefore his behavior would be the
result of an optimization problem or even the solution to a fixed point problem. Such
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Figure 9: Network topology and ROC curves for various levels of noise misspecification from upper right to
lower right, the standard deviation of the noise is 10, 20 and 30 percent.

problems in complex environments such as a computer network can become intractable
with only a small number of hosts (especially fixed point solutions). As a result, it
might only be feasible to consider attacker behavior at hosts with the most sensitive
information. Therefore, it is imperative for the likelihood ratio detector to be e↵ective,
even when it only considers malicious activity along a subset of edges in the network.

Figure 10 shows that the likelihood ratio detector does outperform the simple
anomaly detector even when the likelihood ratio assumes the attacker only takes the
center path. It is interesting to note that under this specification, the likelihood ratio is
being handicapped because the malicious activity o↵ of the center path enters multi-
plicatively and equally in the numerator and the denominator of the likelihood ratio and
therefore cancels. However, the malicious activity o↵ of the center path does provide
evidence of an attack when using the simple anomaly detector. In other words, since
the likelihood ratio assumes the rate of malicious message transmission o↵ of the cen-
ter path is 0, all messages o↵ of the center path are considered as normal background
behavior, regardless of how abnormal the messages seem. On the other hand, the sim-
ple anomaly detector considers tra�c along all edges and therefore abnormal activity
o↵ of the center path would push the simple anomaly classification criteria toward the
threshold.
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Figure 10: ROC curve where the attacker is assumed to only take the center path.

4.1. Real Network Experiments
In all of the previous experiments, the network topology and message transmission

rates were selected to be a stylized representation of real world networks. To ensure that
the results hold for more realistic networks, this section extracts network topologies
and estimates message rates from data collected from an active computer network. The
data used are the Los Alamos National Lab (LANL) “User-Computer authentication
associations in time” [7]. The data contain time-stamped user-computer authentication
logs. For example, one data point is given by:

U1, C5, 1

which represents a user with an anonymous identification number U1 logging into a
host with identification number C5 at time 1. The data are taken over a period of nine
months and the unit of time is seconds. The time stamps are given in whole numbers
and therefore the data are binned into seconds.

Concurrent connection attempts by the same user constitute communication be-
tween two hosts.3Suppose, for example, U1 logs into C1 and then in the same second
U1 logs into C2, then a communication is inferred, which is then modeled as a directed
edge from C1 and C2. The network topology is constructed in this way because of the
following logging artifact: If U1 is logged onto C1 and successfully logs onto C2, the
authentication log will record 2 entries. The first will be an authentication log at C1;
user 1 must be authenticated at C1 in order to log onto other hosts. The second will be
a recording at C2 that notes a successful authentication into C2. In the language of the
preceding section, an authentication attempt is a “message.”

Since the dataset covers nine months of authentication requests, which includes
11, 362 users and 22, 284 computers, the computational approach only allows for the
analysis of a subset of the network at a relatively small slice in time. To do this,
only one hour intervals in the first month of the dataset are considered. However,
due to computational limitations only the elements of the network that see the most

3In fact, this is an assumption. It might not always be true that concurrent connection attempts constitute
communication between two hosts, consultation with the author of the dataset suggests that this is almost
always the case.
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Figure 11: The distribution of Poisson rates extracted from the LANL network.

tra�c are included. This modeling choice is motivated by two generally observed
patterns. First, the part of the network with the most tra�c is where it will be most
di�cult to detect an attacker. In other words, an attacker’s rate is always relatively
low. Therefore, if the background rate between hosts is relatively high, the attacker’s
signal to noise ratio is low, thus rendering detection more di�cult. On the other hand,
it is easier for an attacker to go undetected when there are many users logging into a
specific machine. The second motivation is that high tra�c areas are likely to be the
location of valuable information and hence be a likely location to deploy a novel attack
detector. The reason for this is that central servers typically contain the most valuable
information and therefore often receive the most tra�c.

To extract a subgraph for analysis, a random hour in the first month of the data is
sampled and then a full graph is created based on the method described above. From
the full graph, any nodes (and corresponding edges into and out of the node) that do
not have more than 15 incoming messages and 15 outgoing messages are removed.
This results in several disconnected subgraphs. The final graph is the largest connected
component. The estimate of the per hour message transmission rate is simply the one
hour message count. That rate is used to simulate the background messages. That is,
actual message times are not used as the observed data. Instead, the observed messages
are used to estimate a Poisson rate to generate the times of normal message transmis-
sion. The distribution of per minute message rates between nodes in the two extracted
topologies is given in figure 11. The figure indicates that there is significant rate het-
erogeneity with the highest rate being more than 10 times that of the lowest rate in each
experiment.

Although using the actual message times would be a more accurate representation
of the real data, time heterogeneity of the rate constants would significantly increase
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both the model sophistication as well as the computational requirement to carry out
the likelihood calculation in this initial framework. In other words, although in a small
time window, message transmission counts can be described by a Poisson or negative
binomial distribution, this rate changes throughout the working day (and the week-
end). Therefore, the likelihood ratio in section 3 would have to incorporate a stochastic
process that defines the behavior of the background message transmission rates, thus
adding another dimension to the integral calculation in the denominator of the likeli-
hood. Such modeling remains a topic of future work. Furthermore, since the ROC
analysis of the real data requires 800 simulations of the network, there are not enough
data points to carry out an accurate ROC analysis. In other words, even if it was known
that on Tuesdays from 12PM to 1PM, the rate of message transmission was always
the same, the data only contains 36 such occasions which is not su�cient for ROC
analysis.

Since the dataset does not contain attack data, the rate of malicious messages trans-
mission is set to 10% of the background rate. Since it is also not known which node
might be initially compromised, multiple experiments are performed in which the ini-
tially compromised node is uniformly sampled.

Real Data Results and Discussion. The first subgraph analyzed is depicted in figure
12. The numbered nodes correspond to the attacker’s starting point for each of the
experiments. The ROC curves that compare the likelihood ratio detector to the simple
anomaly detector are given in figure 13. The second subgraph analyzed is depicted in
figure 14 and the associated ROC curves are in figure 13. In all of the results, the
network is simulated for T = 60 minutes.

From the figures, it is clear that the likelihood ratio detector is superior at all thresh-
old levels to the simple anomaly detector. Interestingly, the overall performance of both
detectors seem to perform worse in the real network than in the simulated network. The
reason for this is that in the real network, only a subset of the nodes can become com-
promised. For example, in figure 14 where the attacker initially has compromised node
numbered 2, only three of the 21 nodes can possibly become compromised. Therefore,
the signal of the attacker behavior is low compared to the background noise generated
by the entire network. In the previous experiments, it was possible for a greater pro-
portion of nodes to become compromised. Nevertheless, the likelihood ratio detector
still outperforms the simple anomaly detector in all scenarios.

It is also interesting to note that even when the simple anomaly detector performs
no better than random guessing (in the figures, this is the case when the line represent-
ing the simple anomaly detector is almost the same as the dashed line which represents
the performance of uniform random guessing), the likelihood ratio detector o↵ers a
slight advantage over random guessing. The reason for this is due to the definition of a
likelihood. More specifically, the likelihood can be relatively low due to the presence
of an attacker. However, the likelihood can also be low due to an atypical lack of activ-
ity. In this case, the low signal to noise ratio coupled with the simple anomaly detector
sometimes classifies low tra�c as anomalous causes the detector to perform no better
than random. Note that anomalous low tra�c — a phenomenon almost certainly not
indicative of an attacker — does not a↵ect the likelihood ratio’s classification perfor-
mance as this type of behavior will appear in both the numerator and denominator and
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Figure 12: First network topology extracted from LANL network.

cancel. This can be solved in the anomaly detector by restricting the parameter space
to test for rate increases, as is done in [23]. However, the attacker model proposed
incorporates more information than just rate increase testing, and therefore performs
better. Table 1 provides a brief summary of all experiments.
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Figure 13: ROC results for real network topologies. The plots from left to right represent attacker starting
points 1-5 as numbered in figure 12.
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Figure 14: Second network topology extracted from LANL network.
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Figure 15: ROC results for real network topologies. The plots from left to right represent attacker starting
points 1-5 as numbered in figure 14.
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Summary of Results

Graph
Topology ROC Curve Misspecified

Rates?(Y/N)

Clear Dominance
at False Positive
Rate < .05?
(Y/N)

Likelihood Ratio
No worse at all
False Positive
Rates?

1 Fig. 2, 3 4 N Y Y
Fig. 5
(Top Left)

Fig. 5 (Top Right,
Bottom Right) N Y Y

Fig. 5
(Top Left)

Fig. 5
(Bottom Left) N N Y

Fig. 7 Fig 6 N Y Y
Fig. 7 Fig. 8 Y N Y
Fig. 9
(Top Right) Fig. 9 (All) Y Y Y

Fig. 9
(Top Right) Fig. 10 Y Y Y

Fig. 12 Fig. 13 (All) N Y Y
Fig. 14 Fig. 15 (All) N Y Y

Table 1: Results of ROC experiments: The first column gives the figure representing the graph topology.
The second column gives the ROC curve for the experiment. The third column notes if the likelihood ratio
detector is clearly superior at a false positive rate of .05 and less. The final column notes whether the
likelihood ratio detector performs at least as good as the simple anomaly detector for all false positive rates
and better at one or more false positive rates.
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5. Future work

There are many ways that our model of the behavior of a network can be extended.
Most straightforwardly, by incorporating a loss function for incorrect alerts and spec-
ifying a prior probability of there being an attacker, we should be able to construct a
Bayesian decision-theoretic extension of our anomaly detector.

Other future work involves applying our modeling approach for more realistic net-
works. This will likely require us to consider other approaches to evaluating our like-
lihood, e.g., importance sampling or MCMC, rather than simple sampling. Indeed, it
may even be possible to do closed form evaluation of our integrals, using the Laplace
convolution theorem [33].

It should be possible to use our model to make predictions for any scenario in which
humans interact with technical systems in continuous time, and our observational data
is limited. In other future work we will apply our models to make predictions in such
scenarios. (See also Wolpert and Bono [31].) This should allow us to address any
statistical question concerning such scenarios, not just for anomaly detection.

Finally, we have started to extend our approach to model not just a single human
interacting with a technology system, but a set of humans, interacting with one another
as well as that underlying technology system [32]. This extension can be viewed as an
“event-driven” non-cooperative game theoretic approach, which is distinct from both
di↵erential games (in which player moves are real-valued, and chosen continually, at
all times) and Markov games (which lack hidden variables). Future work involves
investigating this event-driven game theory and its application to likelihood ratio based
attack detection.
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